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     Big Data Analytics, The Class
Goal: Generalizations

A model or summarization of the data. 

Data Frameworks Algorithms and Analyses

Hadoop File System

MapReduce

Spark

Tensorflow

Similarity Search

Recommendation Systems
Link Analysis

Deep Learning

Streaming
Hypothesis Testing



The Web, circa 1998



Match keywords, language (information retrieval)
Explore directory
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Match keywords, language (information retrieval)
Explore directory

Easy to game with
“term spam”

Time-consuming;
Not open-ended

The Web, circa 1998



...

 Enter PageRank



Key Idea: Consider the citations of the website. 
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Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?

View 1: Flow Model:

in-links (citations) as votes

but, citations from important pages should count more. 

=> Use recursion to figure out if each page is important. 

PageRank



How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)
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How to compute?

Each page (j) has an importance (i.e. rank, r
j
)

(nj is |out-links|)

View 1: Flow Model: Solve
A B

C D

PageRank
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to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

Transition Matrix, M
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to \ from A B C D

A 0 1/2 1 0

B 1/3 0 0 1/2

C 1/3 0 0 1/2

D 1/3 1/2 0 0

“Transition Matrix”, M

Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]
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 after 2nd iteration:  M(M·r) = M2·r = [15/48, 11/48, …]
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err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:



Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M. 

x is an 
eigenvector of A if: 

A·x = 𝛌·x

finds the...

(Leskovec at al., 2014; http://www.mmds.org/)

http://www.mmds.org/


Power iteration algorithm

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

while (err_norm(r[t],r[t-1])>min_err):
r[t+1] = M·r[t]
t+=1

solution = r[t]

err_norm(v1, v2) = sum(|v1 - v2|) 
#L1 norm

As err_norm gets smaller we are moving toward: r = M·r

View 3: Eigenvectors:
We are actually just finding the eigenvector of M. 

x is an 
eigenvector of A if: 

A·x = 𝛌·x

𝛌 = 1 (eigenvalue for 1st principal eigenvector)

since columns of M sum to 1.
Thus, if r is x, then Mr=1r 

finds the...



View 4: Markov Process

Where is surfer at time t+1?  p(t+1) = M · p(t) 

Suppose: p(t+1) = p(t), then p(t) is a stationary distribution 
of a random walk.

Thus, r is a stationary distribution. Probability of being at 
given node. 
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○ Stationary distributions have a unique distribution if:
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Also known as being stochastic, irreducible, and aperiodic.
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View 4: Markov Process - Problems for vanilla PI 

aka 1st order Markov Process
● Rich probabilistic theory. One finding:

○ Stationary distributions have a unique distribution if:

Also known as being stochastic, irreducible, and aperiodic.

to \ from A B C D

A 0 0 1 0

B 1/3 0 0 1

C 1/3 0 0 0

D 1/3 1 0 0

What would r 
converge to?

A B

C D

                             same node doesn’t repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node



Goals: 
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

A B

C D



Goals: 
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)

A B

C D

to \ from A B C D

A 0 0 1 0

B ⅓ 0 0 1

C ⅓ 0 0 0

D ⅓ 1 0 0



Goals: 
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The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
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1. Follow a random link (probability, 𝛽 = ~.85)
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Goals: 
No “dead-ends”
No “spider traps”

The “Google” PageRank Formulation
Add teleportation:At each step, two choices
1. Follow a random link (probability, 𝛽 = ~.85)
2. Teleport to a random node (probability, 1-𝛽)
      (Teleport from a dead-end has probability 1)

to \ from A B C D

A 0+.15*¼ 1*¼ 85*1+.15*¼ 0+.15*¼

B .85*⅓+.15*¼ 1*¼ 0+.15*¼ .85*1+.15*¼

C .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

D .85*⅓+.15*¼ 1*¼ 0+.15*¼ 0+.15*¼

A B

C D
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as Matrix Model: 

To apply: 
run power 
iterations over M’
instead of M.
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Teleportation, 
as Matrix Model: 

 PageRank, in Practice
… M is sparse…  Can we just work with M? 

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

M = addToDeadEnds(1/N, M)
M’ = beta*M + (1-beta)*[1/N]

NxN
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as Matrix Model: 

The second half of 
the M’ equation is 
just a constant
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Teleportation, 
as Matrix Model: 

 PageRank, in Practice
… M is sparse…  Can we just work with M? 

initialize: r[0] = [1/N, …, 1/N],
r[-1]=[0,...,0]

M = addToDeadEnds(1/N, M)
tele = (1-beta)* (1/N)
while (err_norm(r[t],r[t-1])>min_err):
  r[t+1] = (beta*M .+ tele)·r[t]
  t+=1
solution = r[t]

Exercise: 
Get rid of this step. How 
to adjust algorithm? 

Hint: at least 2 options: 
1. Track dead ends
2. Consider r should sum 
to 1. 



● Flow View: Link Voting
● Matrix View: Linear Algebra

○ Eigenvectors View
● Markov Process View
● How to remove:

○ Dead Ends
○ Spider Traps

In practice, sparse matrix, implement teleportation 
functionally rather than update M’

 PageRank: Summary
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Search, 20+ years later

Many innovations since
  examples: 

● Content Specific, “Personalized PageRank”
● Search Engine Optimization (SEO) countermeasures
● Location/user-specific Search

but still core of approach: PageRank


