Link Analysis

CSE545-Spring 2020 Stony Brook University

H. Andrew Schwartz

Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Algorithms and Analyses
Similarity Search
Link Analysis
Hypothesis Testing Recommendation Systems Deep Learning

The Web, circa 1998

	ALTAVISTA View Matimedia From Oer Vartage Point
ADTMADTFA	Car Buying \& Car Insurance Pain Relief

Click here for abertising information - reach milligns nery manth:
Search the Web \sim and Dtaplay the Resules in Standard Form v

> Submit

Search with Digital's Alta Vista [Adranced Search] [Add URL]
$\frac{\text { Make Mte Laugh.. }}{\text { Contests }} \frac{\text { Creative Web }}{\text { Create a Site.. }}$

eXcite	
$=\text { orizers }$	Excite Search: twice the power of the competition.
	What: \square Bricareh
"Turbo Search1" Download Excite Direct	
Take an ExciteSeeing Tour	INTGGATED BROWSINC, EMAAL NEWSCROUPS AND PACE CREAIION. Nement
	Excite Reviews; site reviews by the web's best editorial team.

© Q Q YAHOO! Yaboel Mexazer Kahos Menueager
 \qquad Cyiver Nox $\underset{\text { Yabosl Mail }}{\text { Gree from armbere }}$ Souch staucedsench

Yahoo! Auctions - Bid bug, ar sell amplang'			
Categaries		livem	
, datapus	Cagpuen	Seas	Dre Tambut
- Cumins	Electatia foxicicutr	-my	Sastes Yestim
Cankioda	¢xays	Tokeaso	2acse

Arts 8 Humanities	News 8 Media
1 remas Ihwogurito-	Dalcanmet Xenopper. TI.
Business 8 Economy	Recreation 8 Sports
	Searn Imal ditu Oatesm-
Computers 8 Internet	Beference
	Litures Destimastes Sontitisn-
Education	Regional
Entertainment	Science
	Areath durcaus Iopmenixy-
Government	Social Science
Health	Society \& Culture
Sotint Disusts Drasi Fimes	
	mbana

In the lionn

Inal Yabets

Here lizats

Maythed yzathouruu

Prtary Policr

The Web, circa 1998

AltaVisTA

Buy and insure noe cars a trucks ondine

Search the Web \sim and Display the Resules in Standard Form \sim

> Submit

Search with Digital's Alta Vista [Advanced Search] [Add URL]

Match keywords, language (information retrieval)
Explore directory

Lsali Yubuts

Mare liatass

The Web, circa 1998

Arts a Humanites
 Business Esconomy Disi trumas Sapsury idenComputers 8 internet hume Wuw Stram Sm Education Colkstionlummic. K. 12 Entertainment
Co
En
He
He
He

Time-consuming; Not open-ended

Enter PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page
Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
 In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much text and hyperlink
 The PageRank Citation Ranking: Bringing Order to the Web

January 29, 1998

PageRank

Key Idea: Consider the citations of the website.

PageRank

Key Idea: Consider the citations of the website.
Who links to it? and what are their citations?

PageRank

Key Idea: Consider the citations of the website.
Who links to it? and what are their citations?

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model: in-links as votes

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

 in-links as votes
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

in-links (citations) as votes
but, citations from important pages should count more.
=> Use recursion to figure out if each page is important.

Innovation 1: What pages would a "random Web surfer" end up at?
Innovation 2: Not just own terms but what terms are used by citations?

PageRank

View 1: Flow Model:

How to compute?
Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{gathered}
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
r_{j}=\sum_{i \in i n L i n k s(j)}^{v_{j}} \text { vote } e_{i}
\end{gathered}
$$

$$
\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

How to compute?

Each page (j) has an importance (i.e. rank, r_{j})

$$
r_{j}=\sum_{i \in \text { vinlete }_{j}=\frac{r_{j}}{n_{j}}}^{n_{j}(j)} \text { vote }_{i} \quad\left(n_{j} \text { is |out-links } \mid\right)
$$

PageRank

View 1: Flow Model:

How to compute?

Each page (j) has an importance (i.e. rank, r_{j})

$$
\begin{gathered}
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \\
r_{j}=\sum_{i \in i n L i n k s(j)}^{v_{j}} \text { vote } e_{i}
\end{gathered}
$$

$$
\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

A System of Equations:

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1}
$$

How to compute?

Each page (j) has an importance (i.e. rank, r_{j})

$$
r_{j}=\sum_{i \in \operatorname{inL} L i n k s(j)}^{\sum_{j}} \text { vote }_{i} \quad\left(n_{j}\right. \text { is |out-links|) }
$$

PageRank

View 1: Flow Model:

A System of Equations:

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \quad \text { How to compute? }
$$

Each page (j) has an importance (i.e. rank, r_{j})

$$
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \quad\left(n_{j} \text { is |out-links } \mid\right)
$$

PageRank

View 1: Flow Model: Solve

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \quad \text { How to compute? }
$$

$r_{B}=\frac{r_{A}^{2}}{3}+\frac{1}{r_{D}}$
$r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2}$
$r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}$
Each page (j) has an importance (i.e. rank, r_{j})

$$
\text { vote }_{j}=\frac{r_{j}}{n_{j}} \quad\left(n_{j} \text { is |out-links } \mid\right)
$$

PageRank

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1}$
$r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2}$
$r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2}$
$r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

PageRank

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
r_{A}=\frac{r_{B}}{r_{A}}+\frac{r_{C}}{r_{D}}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$: ends up at D

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$: ends up at D C and B are then equally likely: ->D->B=1/4*1/2; ->D->C=1/4*1/2

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at? To Start, all are equally likely at $1 / 4$: ends up at D C and B are then equally likely: $->D->B=1 / 4 * 1 / 2 ;->D->C=1 / 4 * 1 / 2$ Ends up at C : then A is only option: $->D->C->A=1 / 4 * 1 / 2 * 1$ View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$,

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$

View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?
To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48$,
View 2: Matrix Formulation

$$
1=r_{A}+r_{B}+r_{C}+r_{D}
$$

$$
\begin{aligned}
& r_{A}=\frac{r_{B}}{2}+\frac{r_{C}}{1} \\
& r_{B}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{C}=\frac{r_{A}}{3}+\frac{r_{D}}{2} \\
& r_{D}=\frac{r_{A}}{3}+\frac{r_{B}}{2}
\end{aligned}
$$

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

Transition Matrix, M

Innovation: What pages would a "random Web surfer" end up at?

To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$

Power iteration algorithm

initialize: $r[0]=[1 / N, \ldots, 1 / N]$,
$r[-1]=[0, \ldots, 0]$
while (err_norm(r[t],r[t-1])>min_err):
err_norm(v1, v2) = |v1 - v2| \#L1 norm

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

"Transition Matrix", M

Innovation: What pages would a "random Web surfer" end up at?

To start: $N=4$ nodes, so $r=[1 / 4,1 / 4,1 / 4,1 / 4$, after 1st iteration: $M \cdot r=[3 / 8,5 / 24,5 / 24,5 / 24]$ after 2nd iteration: $M(M \cdot r)=M^{2} \cdot r=[15 / 48,11 / 48, \ldots]$

Power iteration algorithm

initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 2$	1	0
\boldsymbol{B}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{C}	$1 / 3$	0	0	$1 / 2$
\boldsymbol{D}	$1 / 3$	$1 / 2$	0	0

"Transition Matrix", M

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

Power iteration algorithm

$$
\begin{aligned}
& \text { initialize: } \quad r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0] \\
& \text { while (err_norm }(r[t], r[t-1])>\text { min_er }): \\
& \quad r[t+1]=M \cdot r[t] \\
& \quad t+=1
\end{aligned}
$$

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

We are actually just finding the eigenvector of M.

Power iteration algorithm

x is an

$$
\text { initialize: } r[0]=[1 / N, \ldots, 1 / N]
$$ eigenvector of A if:

$$
r[-1]=[0, \ldots, 0]
$$

$$
A \cdot x=\lambda \cdot x
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1
\end{aligned}
$$

solution $=r[t]$
err_norm(v1, v2) = |v1 - v2| \#L1 norm

As err_norm gets smaller we are moving toward: $r=M \cdot r$

View 3: Eigenvectors:

We are actually just finding the eigenvector of M.
Power iteration algorithm
initialize: $r[0]=[1 / N, \ldots, 1 / N]$ $r[-1]=[0, \ldots, 0]$
while (err_norm $\left.(r[t], r[t-1])>m i n _e r r\right) \quad \mathrm{A} \cdot \mathbf{x}=\lambda \cdot \mathbf{x}$ $r[t+1]=M \cdot r[t]$

$$
t+=1
$$

solution $=r[t]$
$\lambda=1$ (eigenvalue for 1 st principal eigenvector)
since columns of M sum to 1 . Thus, if r is \mathbf{x}, then $M r=1 r$
err_norm(v1, v2) $=\operatorname{sum}(|v 1-v 2|)$ \#L1 norm

View 4: Markov Process

Where is surfer at time $\mathrm{t}+1 ? \quad \mathrm{p}(\mathrm{t}+1)=\mathrm{M} \cdot \mathrm{p}(\mathrm{t})$
Suppose: $p(t+1)=p(t)$, then $p(t)$ is a stationary distribution of a random walk.
Thus, r is a stationary distribution. Probability of being at given node.

View 4: Markov Process

Where is surfer at time $t+1 ? \quad p(t+1)=M \cdot p(t)$
Suppose: $p(t+1)=p(t)$, then $p(t)$ is a stationary distribution of a random walk.
Thus, r is a statipnary distribution. Probability of being at given node.
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
- No "dead-ends": a node can't propagate its rank
- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	0	0	0

What would r converge to?
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:

■ No "dead-ends": a node can't propagate its rank

- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

What would r converge to?
aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
- No "dead-ends": a node can't propagate its rank
- No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.

View 4: Markov Process - Problems for vanilla PI

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

What would r converge to?

aka 1st order Markov Process

- Rich probabilistic theory. One finding:
- Stationary distributions have a unique distribution if:
same node doesn't repeat at regular intervals
columns sum to 1 non-zero chance of going to any other node
Also known as being stochastic, irreducible, and aperiodic.

Goals:

No "dead-ends" No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices 1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	1	0	0

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$0+.15^{* 1 / 4}$	1	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$1 / 3$	$0+.15^{* 1 / 4}$	0	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$1 / 3$	$0+.15^{* 1 / 4}$	0	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$1 / 3$	$.85^{* 1} 1$ $+.15^{* 1 / 4}$	0	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends"
No "spider traps"

The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \from	A	B	C	D
A	0+.15*1/4	0+.15*1/4	$85^{*} 1+.15^{* 1 / 4}$	0+.15*1/4
B	. $85 * 1 / 3+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4	$.85 * 1+.15 * 1 / 4$
C	. $85^{* 1 / 3}+.15 * 1 / 4$	0+.15*1/4	$0+.15^{* 1 / 4}$	0+.15*1/4
D	. $85 * 1 / 3+.15 * 1 / 4$. $85 * 1+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	0	1	0
\boldsymbol{B}	$1 / 3$	0	0	1
\boldsymbol{C}	$1 / 3$	0	0	0
\boldsymbol{D}	$1 / 3$	0	0	0

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$1 / 4$	1	0
\boldsymbol{B}	$1 / 3$	$1 / 4$	0	1
\boldsymbol{C}	$1 / 3$	$1 / 4$	0	0
\boldsymbol{D}	$1 / 3$	$1 / 4$	0	0

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	0	$.85^{* 1 / 4+.15^{* 1 / 4}}$	1	0
\boldsymbol{B}	$1 / 3$	$.85^{* 1 / 4+.15^{* 1 / 4}}$	0	1
\boldsymbol{C}	$1 / 3$	$.85^{* 1 / 4}+.15^{* 1 / 4}$	0	0
\boldsymbol{D}	$1 / 3$	$.85^{* 1 / 4+.15^{* 1} / 4}$	0	0

Goals:

 No "dead-ends" No "spider traps"The "Google" PageRank Formulation Add teleportation:At each step, two choices

1. Follow a random link (probability, $\beta=\sim .85$)
2. Teleport to a random node (probability, 1- β)
(Teleport from a dead-end has probability 1)

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+3} .15^{* 1 / 4} 4$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{\substack{\text { (Brin and Page, 1998) }}}+(1-\beta) \frac{1}{N}
$$

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 11 / 4}}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

to I from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1} / 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 11 / 4}}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

to \from	A	B	C	D
A	0+.15*1/4	. $85^{* 1 / 4}+.15 * 1 / 4$	$85^{* 1+.15 * 1 / 4}$	0+.15*1/4
B	. $85 * 1 / 3+.15 * 1 / 4$. $85 \times 1 / 4+.15 * 1 / 4$	$0+.15 \times 1 / 4$. $85 * 1+.15 * 1 / 4$
C	. $85 * 1 / 3+.15 * 1 / 4$. $85 * 1 / 4+.15 * 1 / 4$	0+.15*1/4	0+.15*1/4
D	. $85 * 1 / 3+.15^{* 1 / 4}$. $85 \times 1 / 4+.15 * 1 / 4$	$0+.15^{* 1 / 4}$	0+.15*1/4

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

To apply:
run power
iterations over M' instead of M.

to 1 from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+.15^{* 1 / 4}}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$.85^{* 1+.15^{* 1 / 4}}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4} 4}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation,

Steps:

$$
\begin{aligned}
& \text { Teleportation, } \\
& \text { as Matrix Model: } \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
\end{aligned}
$$

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

to \backslash from	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
\boldsymbol{A}	$0+.15^{* 1 / 4}$	$1^{* 1 / 4}$	$85^{* 1+}+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{B}	$.85^{* 1 / 3+.15^{* 1 / 4}}$	$1^{* 1} / 4$	$0+.15^{* 1 / 4}$	$.85^{* 1+}+.15^{* 1 / 4}$
\boldsymbol{C}	$.85^{* 1 / 3+.15^{* 1 / 4}}$	$1^{* 1 / 4}$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$
\boldsymbol{D}	$.85^{* 1 / 3+.15^{* 1 / 4}}$	$1^{* 1} / 4$	$0+.15^{* 1 / 4}$	$0+.15^{* 1 / 4}$

Goals:

No "dead-ends" No "spider traps"

Teleportation, as Flow Model:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

But, M^{\prime} is now a dense matrix!

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

PageRank, in Practice

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

But, M^{\prime} is now a dense matrix!

PageRank, in Practice

... M is sparse...

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$

But, M^{\prime} is now a dense matrix!

PageRank, in Practice

... M is sparse... Can we just work with M?

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.

But, M ' is now a dense matrix!

PageRank, in Practice

... M is sparse... Can we just work with M?

$$
\begin{aligned}
& \text { Teleportation, } \\
& \text { as Matrix Model: }
\end{aligned} M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N} \text {] }
$$

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.
initialize: $r[0]=[1 / \mathrm{N}, \ldots, 1 / \mathrm{N}]$,

$$
r[-1]=[0, \ldots, 0]
$$

while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1 \\
& \text { solution }=r[t]
\end{aligned}
$$

PageRank, in Practice

... M is sparse... Can we just work with M?
$\begin{aligned} & \text { Teleportation, } \\ & \text { as Matrix Model: }\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.
initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

M = addToDeadEnds(1/N, M)
while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M \cdot r[t] \\
& t+=1 \\
& \text { solution }=r[t]
\end{aligned}
$$

PageRank, in Practice

... M is sparse... Can we just work with M?
$\begin{aligned} & \text { Teleportation, } \\ & \text { as Matrix Model: }\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

Steps:

1. Compute M
2. Add $1 / \mathrm{N}$ to all dead-ends.
3. Convert M to M^{\prime}
4. Run Power Iterations.
initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

$M=$ addToDeadEnds(1/N, M)
$M^{\prime}=b^{\prime} t a * M+(1-b e t a) *[1 / N]_{N \times N}$
while (err_norm(r[t],r[t-1])>min_err):

$$
\begin{aligned}
& r[t+1]=M^{\prime} \cdot r[t] \\
& t+=1 \\
& \text { solution }=r[t]
\end{aligned}
$$

PageRank, in Practice

... M is sparse... Can we just work with M?
$\begin{aligned} & \text { Teleportation, } \\ & \text { as Matrix Model: }\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

$M=$ addToDeadEnds(1/N, M)
$M^{\prime}=\operatorname{beta}^{*} M+(1-b e t a) *[1 / N]_{N \times N}$
while (err_norm(r[t],r[t-1])>min_err):

$$
r[t+1]=M^{\rho} \cdot r[t]
$$

$$
t+=1
$$

solution $=r[t]$

PageRank, in Practice

... M is sparse... Can we just work with M?

> Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}$

Yes! Work with the calculation of M^{\prime} instead of simply M.
initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

$M=$ addToDeadEnds(1/N, M)
$M^{\prime}=\operatorname{beta}^{*} M \pm(1-\operatorname{bet} a)^{*}[1 / N]_{N \times N}$
while (err_norm $\left.(r[t], r[t-1])>m i n _e r r\right):$

$$
r[t+1]=M^{\rho} \cdot r[t]
$$

$$
t+=1
$$

solution $=r[t]$

PageRank, in Practice

... M is sparse... Can we just work with M?

> Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}$

Yes! Work with the calculation of M^{\prime} instead of simply M.
initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

$M=$ addToDeadEnds(1/N, M)
$M^{\prime}=b e t a * M+(1-b e t a) *[1 / N]_{N \times N}$
while (err_norm($r[t], r[t-1])>$ min_err):

$$
r[t+1]=\left(\text { beta } * M+(1-\text { beta }) *[1 / N]_{N \times N}\right) \cdot r[\mathrm{t}]
$$

$$
t+=1
$$

solution $=r[t]$

PageRank, in Practice

... M is sparse... Can we just work with M?
$\begin{aligned} & \begin{array}{l}\text { Teleportation, } \\ \text { as Matrix Model: }\end{array}\end{aligned} M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}$
initialize: $r[0]=[1 / N, \ldots, 1 / N]$,

$$
r[-1]=[0, \ldots, 0]
$$

$M=$ addToDeadEnds(1/N, M)
while (err_norm(r[t],r[t-1])>min_err):

$$
r[t+1]=\left(\text { beta } * M+(1-\text { beta }) *[1 / N]_{N \times N}\right) \cdot r[\mathrm{t}]
$$

$$
t+=1
$$

solution $=r[t]$

PageRank, in Practice

... M is sparse... Can we just work with M?
$\begin{aligned} & \text { Teleportation, } \\ & \text { as Matrix Model: }\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}, ~$
The second half of the M' equation is just a constant

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

$M=$ addToDeadEnds(1/N, M)
tele $=(1$-beta)* $(1 / N)$
While (err_norm($\left.r[t], r[t-1])>m i n _e r r\right):$

$$
r[\mathrm{t}+1]=\left(\text { beta *M }+(1-\text { beta }) *[1 / N]_{N \times N}\right) \cdot r[\mathrm{t}]
$$

$$
t+=1
$$

$$
\text { solution }=r[t]
$$

PageRank, in Practice

... M is sparse... Can we just work with M?
$\begin{aligned} & \text { Teleportation, } \\ & \text { as Matrix Model: }\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]$
$N \times N$

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

$M=$ addToDeadEnds(1/N, M)
tele $=\left(1\right.$-beta) ${ }^{*}(1 / N)$
while (err_norm($\left.r[t], r[t-1])>m i n _e r r\right):$
$r[t+1]=(b e t a * M .+t e l e) \cdot r[t]$
$t+=1$
solution $=r[t]$

PageRank, in Practice

... M is sparse... Can we just work with M?

$$
\begin{aligned}
& \text { Teleportation, } \\
& \text { as Matrix Model: }
\end{aligned} \quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]
$$

$N \times N$
If M larger than it needs to be because of the dead-ends?

$$
\begin{array}{ll}
\text { initialize: } & r[0]=[1 / N, \ldots, 1 / N], \\
& r[-1]=[0, \ldots, 0]
\end{array}
$$

$M=\operatorname{addToDeadEnds}(1 / N, M)$
tele $=(1-$ beta $) *(1 / N)$
while (err_norm($\left.r[t], r[t-1])>m i n _e r r\right):$
$r[t+1]=\left(b^{2} t a * M .+t e l e\right) \cdot r[t]$
$t+=1$
solution $=r[t]$

PageRank, in Practice

... M is sparse... Can we just work with M?

> Teleportation, as Matrix Model: $\quad M^{\prime}=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}$

Exercise:
initialize: $r[0]=[1 / N, \ldots, 1 / N]$,
$r[-1]=[0, \ldots, 0]$
$M=\operatorname{addToDeadEnds}(1 / \mathrm{N}, ~ M)$
tele $=\left(1\right.$-beta) ${ }^{*}(1 / N)$
while (err_norm($\left.r[t], r[t-1])>m i n _e r r\right):$

$$
\begin{aligned}
& r[\mathrm{t}+1]=(\text { beta } * M .+ \text { tele }) \cdot r[\mathrm{t}] \\
& \mathrm{t}+=1 \\
& \text { solution }=r[\mathrm{t}]
\end{aligned}
$$

PageRank: Summary

- Flow View: Link Voting
- Matrix View: Linear Algebra
- Eigenvectors View
- Markov Process View
- How to remove:
- Dead Ends
- Spider Traps

In practice, sparse matrix, implement teleportation functionally rather than update M^{\prime}

PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page
Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
 In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much text and hyperlink
 The PageRank Citation Ranking: Bringing Order to the Web

January 29, 1998

Search, 20+ years later

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Many innovations since ${ }_{\text {partment }}$
Examples.sergey@cs.stanford.edu and page@cs.stanford.edu
Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy

- Content Specific ${ }^{\text {cosesersonalized PageRank" }}$
- Search Engine Optimization (SEO) countermeasures
- Location/user-specific Search

Search, 20+ years later

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

Many innovations since ${ }_{\text {partment }}$
AXamples.sergey@cs.stanford.edu and page@cs.stanford.edu
Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy

- Content Specific ${ }^{\text {a }}$ Personalized PageRank"
- Search Engine Optimization (SEO) cquntermeasures
- Location/user-specific Search
but still core of approach: PageRank ${ }^{1998}$

